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Although a series of applicable and promising compositions of NiMH electrode have been proposed in the
literature, it is time and cost intensive by using experimental methods only. In this paper, the effects of La, Ce, Pr
and Nd on charge discharge capacity and cycle life of NiMH electrodes are analyzed by applying various artificial
intelligence techniques on literature experimental data. This study shows that an increase in the ratios of La/Ce,
Ce/Nd and a decrease in Pr are beneficial for both charge discharge capacity and cycle life of rare earth nickel metal
hydride electrodes. In particular, a new design of electrode chemistry and its chemical stability are discussed.

1 Introduction
At the current rate of petroleum consumption the global
supply of gasoline will be exhausted in a few decades.1
Development of alternative energy sources is, therefore,
becoming a practical and urgent challenge for scientists and
engineers in all countries. Batteries have become one of the
most promising alternative energy sources because of their
extensive application in our everyday lives.

Different kinds of batteries are available in the market;
namely nickel cadmium (NiCd), nickel metal hydride (NiMH)
and lithium ion (Li ion). NiMH batteries have many advan-
tages over NiCd batteries with respect to performance and
environmental protection, the former can provide up to 30%
more capacity than the latter.2 For Li ion batteries, although
they can store on average three times more energy per given
weight and twice as much energy per given volume than NiCd
batteries,2 their application is limited by the high costs and
concerns on safety and stability issues. Furthermore, NiMH
batteries still enjoy a large share in today’s battery market.

The aim of artificial intelligence is the development of
paradigms or algorithms that require machines to perform
tasks that apparently require cognition when performed by
humans.3 APEX (Advanced Process EXpert)4 is such an
artificial intelligence expert system and was developed in house
on the IBM SP2 supercomputer of the Institute of High
Performance Computing (IHPC). APEX is used as an in-
house tool at the Institute of High Performance Computing
(IHPC) and will not be available on the market. However,
for interest, readers can reproduce the pattern recognition
results of this paper, using commercial software such as
MATLAB or PARTEK. The tool consists of the following of new NiMH electrodes based on literature experimental
components: data processing, collinearity check, feature data. In recent years, various approaches have been developed
reduction, pattern recognition, neural network prediction and for a computer aided materials design.5–7 However, material
genetic algorithm optimization. design of alloy hydrides tends to be very complex and it is

Unlike most commercial process diagnosis and optimization often impossible to do research starting from first principles.
techniques, this tool combines the advantages of pattern The use of APEX reduces the time and cost dramatically. It
recognition, neural network and genetic algorithm. It reduces also demonstrates that APEX can be used in material design
dramatically the effect of noise in the original process data, application in addition to wafer fabrication and petroleum
through a convenient communication between artificial and refining applications. The emphasis of this paper is more on
human intelligence on two dimensional pattern recognition. application of the methodology and less about new artificial
The model so built is more reliable and accurate. The super- intelligence methods.
computing power of IBM SP2 enables a fast solution because
the neural network and genetic algorithm operation are very 2 Feature reduction
computationally intensive. The package has been successfully
applied to the wafer fabrication industry and the petroleum The data used is listed in Table 1. It has a total of 44 records,

each record has four predictor variables (La, Ce, Nd and Pr)refining industry.4 Here, APEX will be applied for the design
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Table 1 NiMH electrode data from Guo et al.8 and Jin9 with four feature reduction module is used. It consists of PCR, KW and
predictor variables (La, Ce, Nd and Pr), two response variables (C0 PLSR. Detailed information about these algorithms can be
and S200) and two class labels (C1 and C2) found in the respective references. Here the algorithms will be

presented very briefly. In PCR, the matrix X containing theNo. La Ce Nd Pr C0 S200 C1 C2 predictor variables is expressed as a score matrix T. This
1 0.317 0.135 0.223 0.325 239.4 0.750 2 1 matrix T results from the projection of X onto the space
2 0.176 0.206 0.124 0.494 240.5 0.520 2 2 defined by the eigenvectors W as
3 0.528 0.029 0.372 0.071 244.7 0.630 2 2
4 0.433 0.040 0.433 0.095 246.4 0.560 2 2 T=XW
5 0.270 0.135 0.270 0.325 233.7 0.760 2 1

The first principal component of the matrix T is simply the6 0.150 0.206 0.150 0.494 234.3 0.570 2 2
7 0.450 0.029 0.450 0.071 226.9 0.530 2 2 linear combination of the original variables that has the
8 0.649 0.040 0.216 0.095 244.2 0.630 2 2 smallest error when used to estimate the original variables.
9 0.405 0.135 0.135 0.325 243.4 0.710 2 1 The second step of the PCR is to regress the matrix Y

10 0.225 0.206 0.075 0.494 247.2 0.880 2 1 containing the response variables onto the score matrix as11 0.675 0.029 0.225 0.071 248.1 0.860 2 1
12 0.288 0.040 0.577 0.095 228.0 0.560 2 2
13 0.180 0.135 0.360 0.325 239.8 0.790 2 1

Y=TB+E

B=(T*T )−1T*Y14 0.100 0.206 0.200 0.494 228.8 0.560 2 2
15 0.300 0.029 0.600 0.071 220.8 0.700 2 1

where * denotes matrix transportation and E is the error16 0.794 0.066 0.109 0.031 255.6 0.610 1 2
17 0.831 0.069 0.078 0.022 270.7 0.600 1 2 matrix. If all the eigenvectors are used to form T, PCR will
18 0.277 0.023 0.545 0.155 218.3 0.690 2 2 yield results identical to multivariate linear regression. The
19 0.272 0.272 0.355 0.101 248.2 0.780 2 1 advantage of PCR over multivariate linear regression is that
20 0.430 0.430 0.109 0.031 258.0 0.560 1 2

PCR concentrates useful information into fewer factors (here21 0.450 0.450 0.078 0.022 256.3 0.550 1 2
factors mean some linear combination of the original variables)22 0.150 0.150 0.545 0.155 234.1 0.640 2 2
and the other factors containing more noise than information23 0.181 0.360 0.355 0.101 233.2 0.680 2 2

24 0.287 0.573 0.109 0.031 257.7 0.590 1 2 can be deleted by cross validation15 and calculation of PRESS
25 0.300 0.600 0.078 0.022 259.2 0.650 1 2 (prediction residual error sum of squares).15 The method
26 0.100 0.200 0.545 0.155 225.6 0.760 2 1 PLSR is a modeling procedure that estimates underlying
27 0.518 0.026 0.355 0.101 229.5 0.600 2 2

factors in X and Y simultaneously. The approach taken by28 0.819 0.041 0.109 0.031 247.8 0.640 2 2
PLSR is very similar to that of PCR, except that the factors29 0.857 0.043 0.078 0.022 259.0 0.660 1 2
are chosen to describe the variables in X as well as in Y.30 0.286 0.014 0.545 0.155 223.5 0.560 2 2

31 0.360 0.450 0.140 0.050 322.0 0.810 1 1 Similarly, cross validation15 and PRESS estimation15 can be
32 0.450 0.050 0.390 0.110 318.0 0.750 1 1 used to determine the number of factors needed to model Y
33 0.400 0.350 0.050 0.200 312.0 0.730 1 1 by X. KW is designed to test that if a variable is important in
34 0.400 0.200 0.250 0.150 295.0 0.720 1 1

the classification of patterns. The test is independent of the35 0.430 0.430 0.050 0.090 326.0 0.760 1 1
response variable.36 0.590 0.060 0.290 0.060 312.0 0.780 1 1

The feature reduction module involves variable scoring and37 0.430 0.300 0.130 0.130 286.0 0.780 1 1
38 0.430 0.300 0.150 0.120 317.0 0.790 1 1 variable selection. In variable scoring, predictor variables are
39 0.740 0.050 0.050 0.160 302.0 0.760 1 1 scored based on their relative importance as returned by PCR,
40 0.480 0.240 0.240 0.040 289.0 0.840 1 1 KW and PLSR. In case of KW, the relative importance is the
41 0.600 0.170 0.140 0.090 296.0 0.780 1 1

KW value. The higher the KW value, the more important the42 0.600 0.050 0.150 0.200 291.0 0.690 1 2
predictor variable is. In the case of PCR and PLSR, their43 0.460 0.270 0.190 0.080 300.0 0.820 1 1
relative importance is defined in term of the absolute regression44 0.670 0.230 0.050 0.050 311.0 0.800 1 1
coefficients of the original predictor variables. The larger the
coefficient, the more important the associated predictor vari-
able is. For PCR, the group scoring model will equally divideand two response variables (C0 : charge discharge capacity,
candidates in the list returned by PCR into three groups. AS200 : capacity retention after 200 cycles). For each record, the
weight of 1, 2 or 3 is assigned to the groups according to theirvalues of the four predictor variables are summed up to unity.
importance factors as judged by PCR. The most importantThe first 30 records are from Guo et al.8 and the remaining
factors will be assigned the weight value 3. The same treatment14 records are from Jin.9 All records are divided into two
applies to both KW and PLSR. In variable selection, anclasses based on the values of C0 and S200 .
aggregate score is computed for each of the variables. ThereClass label C1 is assigned to be 1 (good class) if C0�250
are three selection models available; namely 1 norm, 2 normand to be 2 (bad class) if C0<250. Similarly, class label C2 is
and infinity norm. Variables with aggregate score less than aassigned value 1 (good class) if S200�0.7 and to be 2 (bad
preset score will be removed. The norms used are defined asclass) if S200<0.7.
follows:The data in Table 1 is input to the APEX software. The

data is first preprocessed and normalized. This step includes
cleaning and scaling of the data. Simple statistics for each

1 norm: agg_score=|s1|+|s2|+|s3|

2 norm: agg_score=(s12+s22+s32)1/2

infinity norm: agg_score=max(s1, s2, s3)

variable such as minimum value, maximum value, mean,
standard deviation and variance are provided. The data is
then scaled so that each variable (predictor and response) has
a mean of 0 and a standard deviation of 1. The normalized where agg_score denotes aggregate score, s1, s2 and s3 are

PCR score, KW score and PLSR score returned in the variabledata then undergoes a collinearity check (CC)10 and feature
reduction by principal component regression (PCR),11,12 scoring step.

PCR, KW and PLSR are all linear methods and they haveKruskal–Wallis test (KW )13 and partial least squares
regression (PLSR).14 The sample correlation matrix is calcu- different criteria and objectives. By adopting the above voting

scheme, we reduce the danger of deleting some importantlated in the CC module. The correlation coefficient is checked
for each pair of predictor variables. CC is considered as a variables because variables may be important to one method

but not the other two methods. After the feature reductionpreliminary step to screen out variables that are collinear.
To further eliminate variables that are not important, the step, the less important variables will be deleted but the most

838 J. Mater. Chem., 1999, 9, 837–843



significant variables will be kept. Since all the four predictor
variables are important to both the targets C0 and S200 , none
of them is deleted in the feature reduction module.

3 Pattern recognition
Four important predictor variables remain after feature
reduction. In order to visualize pattern and to identify optimal
zone, 2D projections of the four-dimensional data are neces-
sary. In the APEX tool, two dimensional projections of the
four-dimensional sample space are obtained using various
pattern recognition techniques including principal component
analysis (PCA),11,12 partial least squares (PLS),14 modified
Fisher discriminant analysis (MF )16,17 and linear mapping
(LM ).18 Interested readers can read the respective references
of these algorithms. A genetic algorithm which will be
described in detail later, is used to select a few good projections
among all the projections generated by the above four methods.

Fig. 2 Classification of samples with different capacity retention afterThere are two types of separators used in separating good
200 cycles [(+) S200�0.7, (#) S200<0.7].class from bad class, namely line separator and sphere separ-

ator. The projection whose error value is the smallest will be
between two regions of the data with S200<70%. The X- andthe best projection. The error value is determined from the
Y-axis are given by the following equations:error function relevant to the particular separator. The error

functions for the two different separators are detailed below. X=0.94+1.12La−4.76Ce−3.06Nd+1.60Pr (3)

Y=2.88−2.82La−1.76Ce−4.11Nd−2.09Pr (4)Line: E1+E2+|E1−E2|/(E1+E2+1)

Sphere: E1+E2+|E1−E2|/(E1+E2+1)+r/R Next, eight new data points from Jiang et al.19 are used to
check the above two patterns for C0 and S200 and data iswhere E1 and E2 are accumulated values of the number of
listed in Table 2. All the new data points have S200>0.7 andwrongly classified good class and bad class data points respect-
they are all located in the band-like region between the twoively for using the separation function, r is the radius of the
regions with S200<0.7 (Fig. 3). Only two of the eight newsphere and R is the range of the radius searched for in
data points have C0>250. However, these two points aredetermining the sphere separator. This automatic selection
located at the left hand region of Fig. 4 which is not inreduces human involvement in choosing the good projections.
agreement with where we believe the optimal region should beIt is one of the advanced features of APEX and is particularly
(right hand region of Fig. 4). This may be due to experimentuseful when the number of features is large.

In this paper, PLS is found to give good separation for the
Table 2 New test data from Jiang et al.19 with four predictor variablestarget C0 (Fig. 1). The X- and Y-axis are given by the following
(La, Ce, Nd and Pr), two response variables (C0 and S200) and twoequations:
class labels (C1 and C2)

X=−0.12+2.43La+2.43Ce−4.09Nd−2.58Pr (1)
No. La Ce Nd Pr C0 S200 C1 C2Y=0.80−2.88La+3.28Ce−2.71Nd+3.12Pr (2)
1 0.400 0.100 0.400 0.100 232.0 0.844 2 1Substitution of the contents of La, Ce, Nd and Pr into eqn. (1)
2 0.400 0.100 0.300 0.200 245.0 0.856 2 1

and (2) results in a point in two-dimensional space. From 3 0.400 0.100 0.200 0.300 290.0 0.835 1 1
Fig. 1, it is observed that the two classes are well separated. 4 0.200 0.300 0.400 0.100 210.0 0.828 2 1

Fig. 2 shows a classification of S200 according to whether 5 0.300 0.200 0.400 0.100 240.0 0.793 2 1
6 0.400 0.200 0.300 0.100 258.0 0.802 1 1S200 is greater or less than 70% by PLS. A high reading in
7 0.400 0.300 0.200 0.100 220.0 0.832 2 1S200 means a long cycle lifetime. It can be seen from Fig. 2
8 0.400 0.400 0.100 0.100 205.0 0.810 2 1that data with S200 are distributed in a band-like region

Fig. 1 Classification of samples with different charge discharge capacit- Fig. 3 Location of new test samples using eqn. (3) and (4) [(+)
original S200�0.7, (#) original S200<0.7, (%) test S200�0.7].ies [(+) C0�250, (#) C0<250].
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Fig. 5 Actual and predicted values of C0 (Training set).
Fig. 4 Location of new test samples using equations (1) and (2) [(+)
original C0�250, (#) original C0<250, (%) test C0�250, (V )
test C0<250].

errors. Another possible explanation is that the electrode
studied by Jiang et al.19 is RE(NiCoMnTi)5 while the electrode
studied by Guo et al.8 and Jin9 is RE(NiCoMnAl )5 . For the
remaining six points which have C0<250, only one point is at
the wrong side of the boundary, the other five points being
located correctly at the left hand region of Fig. 4.

4 Neural network prediction
In order to predict C0 and S200 from the four predictor
variables, a neural network is developed for each of the
response variables. Because the four predictor variables satisfy
the constraint La+Ce+Nd+Pr=1, it is sufficient to train the
network with three of the predictor variables. In this paper,
La, Ce and Nd are chosen to train the neural network.

Fig. 6 Actual and predicted values of C0 (Validation set).
In the APEX software, neural networks are trained using

Levenberg–Marquart optimization.20 Before each network is
trained, the input data set is randomly partitioned into a
training set, a validation set and optionally a test set. The
validation set is used to implement ‘early stopping’ to help
prevent overfitting and to improve generalization and pre-
dictability. During the training, the network error is calculated
after each epoch (a pass through the training set) using the
validation set, and the model with the smallest validation error
is retained. The test set, if present, is used to estimate the
generalization error for the model that is retained. This module
is designed to build and test multiple neural network models
efficiently and automatically. It takes advantage of multiple
nodes on the IBM SP2 supercomputer using a simple task
oriented form of parallelism.

In our case study, a random validation set containing 10%
of the samples (four records) is held out to implement ‘early
stopping’ for both the C0 and S200 . The values of C0 and S200
from experiments vs. those predicted by the neural networks

Fig. 7 Actual and predicted values of S200 (Training set).are shown in Fig. 5–8. The results of predicted values are in
agreement with the experimental values.

1 or 2 while the value of Pr is kept at 0.05. Fig. 9 gives the
performance of S200 with respect to these designed parameters.5 Design of new NiMH electrodes
From Fig. 9, it is observed that in order to make the new
designed points close to the optimal zone (the band-likeIn the design of new NiMH electrodes, the composition of the

four elements (La, Ce, Nd and Pr) is changed and the effect region), the ratio Ce/Nd is preferred to be either 1 or 2. But
since it is desirable to have as little usage of Nd as possible,of such a change on C0 and S200 is analyzed. In order to

design a new NiMH electrode, economical factors and per- the ratio Ce/Nd is perferred to be 2. In a similar design, no
significant improvement is found if the value of Pr is set toformance are the selection criteria. Since Nd is the most

expensive element among the four, the objective is to design be 0.15.
The design criteria mentioned above for S200 is applied tothe most effective electrode with as little Nd as possible.

In our first design, the value of Nd ranges from 0.05 to 0.32 C0 and the performance of C0 with respect to these design
criteria is depicted in Fig. 10. Similar to S200 , a better resultin a step increment of 0.03. The ratio of Ce/Nd is kept at 0.5,
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Fig. 8 Actual and predicted values of S200 (Validation set).
Fig. 11 Performance of S200 with respect to La/Ce, Pr=0.05, Nd=
0.05, 0.32, 0.03 [(( ) Nd=0.32, (6) Nd=0.05; (,) La/Ce=4, Pr=
0.05; (–Ω–Ω) La/Ce=3, Pr=0.05; (– ––) La/Ce=1, Pr=0.05].

Next, the effects of the ratio La/Ce on S200 and C0 are
investigated. In this case, the ratio of La/Ce is selected to be
1, 3 or 4. The values of Pr and Nd are the same as those used
in the first design. Fig. 11 shows the performance of S200 while
Fig. 12 gives the performance of C0 . It can be observed from
Fig. 11 that new points will fall in the optimal zone if the ratio
of La/Ce equals 3. The trend is not changed when the value
of Pr is changed to 0.15.

It should be noted that C0 is insensitive to the ratio of
La/Ce. Designed points with the ratio La/Ce equal to 1, 3 or
4 are overlapped on a straight line (Fig. 12).

However, the value of Nd should be small as this is the
optimal direction to follow (right region of Fig. 12). C0 remains
insensitive to the ratio La/Ce when Pr is set to be 0.15.

The following last set of parameters is used: the ratio of
La/Ce can either be 1, 3 or 4, the value of Pr is increased fromFig. 9 Performance of S200 with respect to Ce/Nd, Pr=0.05, Nd=
0.05 to 0.32 with a step size of 0.03 and the ratio of Ce/Nd is0.05, 0.32, 0.03 [(( ) Nd=0.05, (6) Nd=0.32; (,) Ce/Nd=2, Pr=

0.05; (–Ω–Ω) Ce/Nd=1, Pr=0.05; (–– –) Ce/Nd=0.5, Pr=0.05]. chosen to be 2. For S200 , the set of parameters La/Ce=3,
Ce/Nd=2 gives the best performance (Fig. 13). A low value
of Pr should also be used since higher Pr will not bring in any
additional benefits.

As for C0 , it is clear from Fig. 14 that La/Ce=3 and
Ce/Nd=2 give the best result among all the design criteria. A
high value of Pr will move the designed points toward the bad
zone located at the left region of Fig. 14.

The effects of the ratios La/Ce and Ce/Nd and the value of

Fig. 10 Performance of C0 with respect to Ce/Nd, Pr=0.05, Nd=
0.05, 0.32, 0.03 [(( ) Nd=0.05, (6) Nd=0.32; (,) Ce/Nd=2, Pr=
0.05; (–Ω–Ω) Ce/Nd=1, Pr=0.05; (–– –) Ce/Nd=0.5, Pr=0.05].

is achieved if the ratio of Ce/Nd is chosen to be 2. It can be
seen from Fig. 10 that the points when Ce/Nd equals 2 are
closer to the optimal region than the points when Ce/Nd
equals 0.5 or 1. At the same time, the value of Nd should be
kept small since a high value of Nd will cause the resultant Fig. 12 Performance of C0 with respect to La/Ce, Pr=0.05, Nd=
points to move towards the bad zone ( left hand region of 0.05, 0.32, 0.03 [(( ) Nd=0.32, (6) Nd=0.05; (,) La/Ce=4, Pr=

0.05; (–Ω–Ω) La/Ce=3, Pr=0.05; (– ––) La/Ce=1, Pr=0.05].Fig. 10). The same conclusion can be drawn if Pr equals 0.15.
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Table 3 Results of maximization and minimization of optimal points
using a genetic algorithm

Predicted Predicted
Maximum or minimum La Ce Nd C0 S200

301.0283 (Maximum C0) 0.633 0.195 0.121 301.0053 0.8084
271.2917 (Minimum C0) 0.626 0.193 0.091 271.5224 0.8898
0.884 (Maximum S200) 0.626 0.193 0.094 274.1538 0.8832
0.757 (Minimum S200) 0.633 0.219 0.117 286.9966 0.7586

may be used since it is particularly useful for searching the
input space for optimal points.

A genetic algorithm is a straightforward computerized
search method based on the ideas of genetics and natural
selection. It relies on the assumption embedded in the idea of
natural selection that as members of the population mate, they
produce offspring that have a significant chance of retainingFig. 13 Performance of S200 with respect to La/Ce, Ce/Nd=2, Pr=
the desirable characteristics of their parent, perhaps even0.05, 0.32, 0.03 [(( ) Pr=0.05, (6) Pr=0.32; (,) La/Ce=4, Ce/Nd=
combining the best characteristics of both parents. In this2; (–Ω–Ω) La/Ce=3, Ce/Nd=2; (–– –) La/Ce=1, Ce/Nd=2].
manner, the overall fitness of the population can potentially
increase from generation to generation. After generations of
evolution, an optimal solution will finally be obtained. Genetic
algorithms have been shown to solve linear and nonlinear
problems by exploring all regions of the state space and
exponentially exploiting promising areas through mutation,
crossover and selection operations applied to individuals in
the population.21

In the APEX software, a trained neural network model,
which is a function returning an appropriate target value for
each set of input values for predictors, will be taken as input
to the genetic algorithm module. The genetic algorithm will
then perform minimization, maximization or set point optimiz-
ation on the specified function in which the specified function
will be optimized to as close to the stated set point value
as possible.

Recall that the neural network models for S200 and C0 are
based on the three predictor variables La, Ce and Nd and the
optimal values for La, Ce and Nd are 0.63, 0.21 and 0.11,
respectively. The variation ranges of La, Ce and Nd are La

Fig. 14 Performance of C0 with respect to La/Ce, Ce/Nd=2, Pr= (0.62–0.64), Ce (0.19–0.23) and Nd (0.09–0.11). The results
0.05, 0.32, 0.03 [(( ) Pr=0.05, (6) Pr=0.32; (,) La/Ce=4, Ce/Nd= of maximization and minimization are shown in Table 3. The
2; (–Ω–Ω) La/Ce=3, Ce/Nd=2; (–– –) La/Ce=1, Ce/Nd=2]. first column of Table 3 gives the maximum or minimum value

of C0 or S200 returned by the genetic algorithm. The second
to fourth columns are the values of La, Ce and Nd returned

Pr on the performances of S200 and C0 are studied and by the maximization or minimization procedure. The predicted
analyzed. The study shows that in order to reduce costs and

values of C0 and S200 by neural network are in the last twoimprove performances of S200 and C0 , the following criteria
columns. From Table 3, the maximum values of S200 and C0can be adopted.
within the studied region are 0.884 and 301.0283 respectively;
the minimum values of S200 and C0 within the studied regionLa/Ce=3 (5)
are 0.757 and 271.2917 respectively. Therefore, the model

Ce/Nd=2 (6)
predicted that within the composition range of La=0.62–0.64,
Ce=0.19–0.23 and Nd=0.09–0.13, all electrodes will have atPr=0.05 (7)
least 0.757 and 271.2917 for S200 and C0 which satisfy theBased on the above criteria, the values for the four elements
good class criteria for both response variables (S200�0.7,

are La=0.63, Ce=0.21, Nd=0.11 and Pr=0.05. Using these
C0�250).

values and the neural network models for S200 and C0 , the
predicted values of S200 and C0 are 0.8208 and 289.1274

7 Conclusionrespectively which are considered optimal points for both
response variables.

Various artificial intelligence techniques are used in the design
of new nickel metal hydride electrodes. It is shown that an

6 Genetic algorithm optimization increase in the ratios of La/Ce and Ce/Nd and a decrease in
the value of Pr improve the charge discharge capacity andA new design is useful only if the requested precision of
cycle life of rare earth nickel metal hydride electrodes. A newchemical composition is low enough to match the experimental
electrode is thus proposed:

error limits. Otherwise, it would be very difficult for quality
control in the later production process. For the new designed
electrode [eqn. (5), (6) and (7)], its performance stability

La=0.62–0.64

Ce=0.19–0.23

Nd=0.09–0.13
within the range of La=0.62–0.64, Ce=0.19–0.23 and Nd=
0.09–0.11 is studied. For this purpose, a genetic algorithm
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